Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine.
نویسندگان
چکیده
The formations of THMs, HAAs, and HNMs from chlorination and chloramination of water from Jinlan Reservoir were investigated in this study. Results showed that monochloramine rather than chlorine generally resulted in lower concentration of DBPs, and the DBPs formation varied greatly as the treatment conditions changed. Specifically, the yields of THMs, HAAs and HNMs all increased with the high bromide level and high disinfectant dose both during chlorination and chloramination. The longer reaction time had a positive effect on the formation of THMs, HAAs and HNMs during chlorination and HNMs during chloramination. However, no time effect was observed on the formation of THMs and HAAs during chloramination. An increase in pH enhanced the levels of THMs and HNMs upon chlorination but reduced levels of HNMs upon chloramination. As for the THMs in chloramination and HAAs in chlorination and chloramination, no obvious pH effect was observed. The elevated temperature significantly increased the yields of THMs during chlorination and HNMs during chloramination, but has no effect on THMs and HAAs yields during chloramination. In the same temperature range, the formation of HAAs and HNMs in chlorination showed a first increasing and then a decreasing trend. In chloramination study, addition of nitrite markedly increased the formation of HNMs but had little impact on the formation of THMs and HAAs. While in chlorination study, the presence of high nitrite levels significantly reduced the yields of THMs, HAAs and HNMs. Range analysis revealed that the bromide and disinfectant levels were the major factors affecting THMs, HAAs and HNMs formation, in both chlorination and chloramination. Finally, comparisons of the speciation of mono-halogenated, di-halogenated, tri-halogenated HAAs and HNMs between chlorination and monochloramination were also conducted, and factors influencing the speciation pattern were identified.
منابع مشابه
Disinfection byproducts in swimming pool water in Sanandj, Iran
The present study aimed to determine the concentrations of several disinfection byproducts (DBPs), including trihalomethanes (THMs), haloacetic acids (HAAs), and haloacetonitriles (HANs), in the public and private swimming pools in Sanandaj, Iran (n=16). Correlations between DBP levels with water quality parameters (free chlorine, pH, total organic carbon, temperature, number of swimme...
متن کاملModeling the formation of chlorination by-products in river waters with different quality.
Water chlorination results in formation of a variety of organic compounds, known as chlorination by-products (CBPs), mainly trihalomethanes (THMs) and haloacetic acids (HAAs). Factors affecting their concentrations have been found to be organic matter content of water, pH, temperature, chlorine dose, contact time and bromide concentration, but the mechanisms of their formation are still under i...
متن کاملFormation of haloacetic acids, halonitromethanes, bromate and iodate during chlorination and ozonation of seawater and saltwater of marine aquaria systems.
This manuscript addresses identification, analysis, formation and occurrence of key disinfection byproducts (DBPs) formed during chlorination and/or ozonation of both natural seawater (NSW), and synthetic high- and low-bromide saltwater (HBSW and LBSW, respectively). In this study, several groups of water disinfection byproducts were studied, including haloacetic acids (HAAs), halonitromethanes...
متن کاملThe formation and control of emerging disinfection by-products of health concern.
When drinking water treatment plants disinfect water, a wide range of disinfection by-products (DBPs) of health and regulatory concern are formed. Recent studies have identified emerging DBPs (e.g. iodinated trihalomethanes (THMs) and acids, haloacetonitriles, halonitromethanes (HNMs), haloacetaldehydes, nitrosamines) that may be more toxic than some of the regulated ones (e.g. chlorine- and br...
متن کاملControlling DBPs with monocholoramine
he proposed Disinfectants/Disinfection By-products (D/DBP) Rule and the Enhanced Surface Water Treatment Rule (ESWTR) have prompted an industrywide evaluation of disinfection and treatment practices.1,2 One of the least expensive methods of limiting DBP formation is to use monochloramine instead of free chlorine to maintain a distribution system residual. Monochloramine limits free chlorine con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Science of the total environment
دوره 444 شماره
صفحات -
تاریخ انتشار 2013